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Let A= -A+V(x) be a Schradinger operator on an (arbitrary) open set

QC Rm, where V e 1.1
loc

"maximal" realization of A in LZ(Q) under Dirichlet boundary condition,
that is

() is a complex valued function. We consider the

D(a) ={uen(n),Vue Li (R) and -Au + Vue L@} -
When 2 = R® we also consider the operator @r R C_TS ﬁ l 8 !7 5‘1
A=A+ vV

with domain

1

Q) and -Au + Vu e 13(Q)} .
loc

D(Al) = {u e Lz(ﬂ): Vue L

A special case of our main results is:

Theorem: Let m > 3; assume that the function max{-Re V,0} belongs to

£ + 1™210) and also to L{:£2)+e(9) for some ¢ > 0. Then A (resp. A))
is closable and A + ) (resp. il + 1) is m-accretive for some real constant A.

AMS (MOS) Subject Classifications: 35J10, 47B44
Key Words: Schrodinger operator, Complex potentials, m-accretive operator
Work Unit Number 1 (Applied Analysis)

(B)DAAG 29-15 TSNS E-ML S 1~ 46 55

Pege = A

1l).pl:. de lllth‘-ctiquu. Universite Paris VI, 4 pl. Jussieu, 75230 Paris 05, France.
Zhept. of Mathematics, University of California, Berkeley, CA 94720.

Sponsored by
3) the United States Army under Contract No. DAAG29-75-C-0024;
4) the National Science Foundation under Grant No. MCS76-04655.

444 400 i

L e St S




SIGNIFICANCE AND EXPLANATION

B 7
(2
Schrédinger operators of the form A = -@ + V(x), m is the

Laplacian and@ V is a scalar potential, arise in quantum mechanics and other
lareas. Delicate questions concerning what domain should be assigned to A
must be settled in order to have a good theory. These questions are answered
here for a very general class of potentials V which may even have complex

values.

AN

The responsibilities for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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REMARKS ON THE SCHRODINGER OPERATOR WITH SINGULAR COMPLEX POTENTIALS

Haim Brezisl'3 and Tosio xato2'4

1. Introduction

Let A = -8 + V(x) be a Schrodinger operator on an (arbitrary) open set Q C Rm.

1
l'loc

of A in Lz(ﬂ) under Dirichlet boundary condition, that is

where V € () is a complex valued function. We consider the "maximal" realization

1

2
loc(m and -~Au + Vue L°(Q)) .

D(A) = {u e ugm): VuelL

When 0 = R* we also consider the operator
Al =<4 +V
with domain

1

2
loc(m and -Au + Vue L°(Q)} .

D(Al) = {ue Lz(ﬂ)t VuelL

We state now our main results (see Theorems 3.1 and 3.2) in a special case.

Theorem: Let m > 3; assume that the function max{-Re V,0} belongs to L@ + x.‘/’(m

and also to L(m/2)+s

1oc (R) for some € > 0. Then A (resp. Al) is closable and A + A

(resp. il + 1) is m-accretive for some real constant A.

We emphasize the fact that max{Re V,0} and ImV could be arbitrary functions
in L@,

Our methods rely on some measure theoretic arguments and standard techniques of
DeGiorgi-Moser-Stampacchia type, related to the weak form of the maximum principle.

The distributional inequality

Alu] > Re[Au sign u]

Proved in [3] plays a crucial role. We also use a result from [1]) concerning a property
of Sobolev spaces.

In order to describe our method in a simple case we begin in Section 2 with real

valued potentials. The main results in Section 2 are essentially known (see (3], [4], [8]) -

except perhaps for Theorem 2.2 when m < 4.

1 . .
Dept. de Mathematiques, Universite Paris VI, 4 pl. Jussieu, 75230 Paris 05, France.

2
Dept. of Mathematics, University of California, Berkeley, CA 94720.

Sponsored by
3) the United States Army under Contract No. DAAG29-75-C-0024;
4) the National Science Foundation under Grant No. MCS76-04655.
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In Section 3 we turn to the case of complex potentials. Schrodinger operators with

complex potentials have been studied by Nelson [6]. His results were extended in [5]).

Here we allow more general singularities.

We thank Professors R. Jensen and B. Simon for useful suggestions and discussions

(with the first author).




2. Real valued potentials

2

Let Q@ be an (arbitrary) open subset of K" and let H=1’= L2(91¢). Let

1

loc(m be a real valued function. Set

qe L
+ -
q = max(q,0), q = max(-q,0) .
Assume
(1) q e L@ + P

with

P" % when m>3
p>1 when me=2
p=1 when m=] .,
Consider the operator A defined in H by
A= -4+ q(x)
with

D) = {ue H@: que L () and -tu + que L2@) .

loc
The main results are the following:

Theorem 2.1. A is self-adjoint and A + Al is m-accretive for some real constant )
|2 |2

1

Furthermore u,v e D(A) imply q|u|® e @, qlv|€ e 1@ and

(2) (Au,v) = [ gradu graav + [ quv .

When Q = " we also consider the operator A, defined in H by

1

Al = =A + q(x)

DAY = (ue 2@ que L (M ana -au+ que tP@) .

loc

Only when m = 3 or m =4 we will make the additional assumption:

3) q'cxf;;:(m with p-%whon 2=3 and p=2 when m = 4, for some
arbitrarily small € > 0 .

More precisely we assume that for each X, « " there exists a minhborbood U of '0

and some ¢ > 0 (depending on x,) such that q ¢ 1”*(v).

Theorem 2.2: Under the assumptions (1) and (3), Al = A,




Our first lemma is well known:

lemma 2.1: Assume (1). Then for every € > 0, there exists a constant XE such that

- 12 2 2 1
[ & lul® < ellgraau(l®, + A _[lull®,  wue mi@ .
L L
In particular
- 12 2 2 1
[ a7l < llgraaull?, + 2 flull?,  vae mb@ .
L L
Proof: Write g =gq +q, with q € L17(®) and g, ¢ tP(2). Then for each k > 0
we have
-2 2 2 2
a7l < el Mall™, + S layllul®+x u]
L L tla,|>k t]a,| <k
< dlgll o+ wllall?, + Iyl lall®,
L L L (1] q,}>xN L
with
1.2
F + "€ =1 .
* * 1 1 il
Incase m >3 we find t =2 where 2 is the Sobolev exponent, that is -T =3 - o0 .
2
By the Sobolev imbedding theorem we have
1
Ilullnt :Cllqradu||L2 Vue Ho(Q) .

When m =2 we find 2 < t < ® and it is known that

1
llull . < ctligraaull , + llull Vue H (@) .
Lt x‘2 Lz 0

When m =1 we find t = and it is known that

1l
llull ., <ctllgragull , + Jlull »  we H@ .
L L L
We reach the conclusion of Lesma 2.1 in all the cases by choosing k large enough so that

2
c“lla,ll <e .
- Putla,>xn

Remark 2.1: Assumption (1) is used in all the results of this paper only through
Lesma 2.1 and it may in fact be weakened to a “locally uniform LP-condition":

(a4 a |l +0 as r~+ 0 uniformly in ye Q ,
P@ns_(y)
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where
B.(y) = {xe R |x -yl <r}).

Indeed let v ¢ 9+(R') with supp ¢ C Br(O) and |lv|| o' 1. Then, writing
L
wy(x) =¢(x - y),
- 2 - 2 -
falel® = Jay [Tl |® <[ llall
L (B

lluey 117 ay -
e (¥)) L

Here |lq|| < & for any small & by (1') if r

P is chosen small. So
L (Br(Y))

[alal? <6 [llw 1?8y <cs [ llgraacue )]0y
™ [ e R

2 2
<28 | ("wygradu” s * qradwy” ay
L L
= 2c8(flgraaull, + c_fluli®,) .
2 r 2
L L
Choosing & so that 2C§ = g,

one gets the conclusion of Lemma 2.1. Such a locally
uniform Lp—condition was used by Simader (7].

We recall a result of [1) which will be used in the proof of Theorem 2.1(1)

Lemma 2.2: Let Te H‘l(m n L]l.ocm) and let u e Hg(m be such that a.e. on @

ReT - u > f

for some real valued function f € x.l(m. Then Re T - u € L'I'(Q) and

Re{(T,u) = f ReT - u

where (T,u) denotes the Hermitian scalar product in the duality between n'l(m and

1
Ho (@) .

R ST —

The proof of Theorem 2.1 is divided into 4 steps.

Step 1: A + ) is onto for A > Al. Set q: = min(q*,n); by a Theorem of Lax-Milgram

there exists a unique function u, e ug(m which satisfies

+ -
()] -Aun*(qn-q)unq»)mn-f.

(l)m use of this sort of lemma in this context was suggested by M. Crandall.
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(Note that by Lemma 2.1 the sesquilinear form | q uv is continuous on Hé(ﬂ)).
Multiplying (4) by Gn we find a constant C independent of n such that

(5) Boll.. 22,
n Hl

&) [alla|®<c.

Choose a subsequence denoted again by u such that u +u weakly in Hcl) (2) and

u *u a.e. on Q. It follows from Faton's Lemma and (6) that q*lulze ). we

1

deduce that qu € Llo

c(9); indeed

+ 1l + 2 1l
alul cza el v e @,

L

- L= 1
g ol <3 a (| e
We pass now to the limit in (4) and prove that =-Au + qu + Au = £ in D'(Q). It suffices
to show that

@ -qu +aqu in L} @

b L M T .
For this purpose we adapt a device due to W. Strauss [9] and extensively used in the
study of strongly nonlinear equations. In view of Vitali's convergence theorem, it
suffices to verify that given w CC @, then Ve > 0,36 > 0 such that ECw and

|e|] <& imply [ Iq; - q-HunI < ¢ for all n. But for every R > 0 we have
E

and thus, by (6),

E
+
We fix R large enough so that %<c and then 6 > 0 so small that R [ q < €. We
E

proceed similarly with q-lun|.
Step 2: A + xl is accretive. Let u e D(A) and set T = qu. Since

1
oc(m and

Te H @) n L

Re Tu = qlulz > -q-lulz e Ll

1

it follows from Lesma 2.2 that qlu|? e L' and

Re(T,u) = [ alul? .




e R ey

T r——ri.

But qu = Au + Au and so

Re{Au,u) - f |gradu|2 = f qlul2 e
Since Au € Lz(ﬂ) we have in fact
Re(Au,u) = [ |9tldu|2 + f Q|\l|2 > '11 / |“|2
by Lemma 2.1.
I2

Step 3: ue D(A) implies qlu|?e L'(2) and (2) holds. We have just seen in Step 2

that u e D(A) implies q|u|2 e t1@). Now let u,ve D(A) and set T = qu. We have
-1 1
n
Te H (Q) Lloc(m and
Re T - v = Re quv > - 3 |allul® - 2 |q||v]? ¢ tP@)

and therefore
Re(T,v) = [ Re quv .
Thus
* Re(Au,v) - Re [ gradu gradv = Re [ quv .
Changing u into iu we find
(Au,v) = [ gradu gradv + [ quv .
Step 4: A is self-adjoint. Indeed A + Al is m-accretive and symmetric. Therefore
A+ is self-adjoint and so is A.

1

Proof of Theorem 2.2: Clearly A C Al. Let u e D(Al) and set f = Alu + Au with some

-
A > Xl. Let u € D(A) be the unique solution of

FWAEE T )

We have
* *
Altu-u)«rl(u-u)-o.
Since (u - u') ¢ L'l (R™) and A(u - u') € Ll (B we may apply Lemma A in (3] to
loc loc

conclude that
» * " n
AIu-uILM(A(u-u)lign(u-u)l in D'(R") ,
and thus in D'(R") we find,
- L - *
lu-u|>Relt@g+ N |u=-ull>(~qg +N|u-u].

Using the next lemma we conclude that u = u  (and hence D(A,) = D(A)).

aY=
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Lemma 2.3: Assume (1) and (3). Let v ¢ L?(R™ be a real valued function with '

1

qVve Ll

o‘:(lim) satisfying
-0v - q Vv +Av €0 in D* (R™

with some X > Xl. Then v < 0 a.e. on R

The proof of Lemma 2.3 relies on the following crucial result. Since we shall
need it in Section 3 for a general domain Q C R™ we work now again in Q.
Theorem 2.3: Assume (1). Let ge L’(® N L7(2) and let Ve H (W) be the unique
solution of
)] : - -qgqy+i=g in @ (A>A) .
Then
a) g>0 a.e. on 2 implies ¥y > 0 a.e. on Q;

B ve M 1P .
2:P<.

Proof of Theorem 2.3: a) Multiplying (7) by -y we find

[leraa vT1* - [aT W12 [ V1% <o
and thus ¥ = 0.
b) We have to consider only the case m >3 (when m <2, Yy ¢ Hé(ﬂ) implies

ve M Pay.
29<-

We can always assume that g > 0 a.e. on Q so that ¥ >0 a.e. on Q. We truncate
q- by q; = nin(q-,k) and define "k to be the unique solution of
1
"k € Ho(ﬂ)

—A&k-qktki»l#k-g in Q .

A S5l S L SR

It is clear that .k + ¥ weakly in Ht(m as k »+ =, We shall prove that for every
pe (2,2, v ¢ 1@ ama
(® o Il o <c disll )+ llall O

i e o o
where Cp is independent of k, but it depends on q- through the use of Lemma 2.1.
For simplicity we drop now the subscript k on *k and write

© by - q¥+Ab =g . S
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Sat. v = min(¥,n) and let 2 < p < ®; since ('.L'n)p-1 € Hé(f?) we can multiply (9)

by (Wn)p-l and we get

@-0 " @w)P?lgraa v 1< [P v [ WP+ [ wFh,
5 % " Gl

that is

4 = 1 2,2 -1 - ~
HEZAL [ Jaraa 217 < lall llv 1Tt ¢ [ @ P e Sy

P [¥>n]
=] p/2)2 P P
< llall Il P70+ ellgraae®?1°, + 2 llw 1P +x [ v
L i) L e [¥>n]
by Lemma 2.1 (here f vhp is possibly infinite). Choosing € > 0 small enough (for
(y>n]
example € = HB—;;—L)- ) we see that
P
p/2)2 P P P
d (& + k
[ lgraa ¥27°|% < p[”g”Lp ell®, + [

L [¥>n]

where Cp is independent of k and n. Using Sobolev's inequality we find

P
(10) . ” P P P
vl e, < lllall® + el +x [ W ‘
p2'/2 p[ LP P (w>n]
§
Assuming now that ¢ € LP(Q) and passing to the limit in (10) as n » » we obtain i
*
that v e P2 72(q

i
and !
§
ol e, <c tllgll _ + llvll 1 . ‘
p27/2 P P P

Iterating this process from p = 2 we obtain finally for every p € [2,®) :

\MILp :cleqHL2 + I|9HL,1 ‘

More precisely we have proved (8). The conclusion of Theorem 2.3 follows since wk >y

T

weakly in ntl)(m as k + =,

Proof of Lemma 2.3: By assumption q v € Lioc(nm) and

[vi-be - a'v + ) <0 we D (RY) .

An easy density argument (smoothing by convolution) shows that

(11) [v(-b; - q-u + M) <0 We Hz(ll.) n L‘(R‘), supp ¢ compact, vy > 0 a.e. .




L ——

Fix g € D*(llm) and let wk € Hl(Rm) be the unique solution of

(12) =k q;wk +\, =g in R .

We know by Theorem 2.3 that wk >0 a.e.

vee M PE wien ol <c .
2<p<e® Lp P

and also ||grad wk|| , $C- In addition we derive from (12) that
L

2,.m ® m
(g
wk € H (R) Lloc(R Nl
Fix ¢ € D*(Rm) satisfying (x) =1 for |x]| < 1 and set Cn(x) = t(’;‘;)- In (11)

we choose ¢ = wkcn. Note that by (12)
-0 -q¢ + A = cng - (Acn)\lok < Zgradcn gradwk - cnwk(q - qk) '
and therefore
C c = -
[ ve g ::2 to* v ute ~aq) .

First we fix n and let k -+ ». We distinguish two cases:

a) m >S5,

b) m < 5.
= - 3 m/2,_m
a) When m > 5 we have q - qk->0 in Lloc(n ). Let pe [2,») be such that
l+£+£- 1; we have
2 m P
I vegta - gl < ||V||L2||wklle||cn(q' - q) I|L,,,/2 +0.
Consequently

C c
v s Gt
n

n/

b) When m < 5 we use the assumption (3) (or (1)): q-f L 2+e(nn) with some € > 0.

loc

It follows from (12) that ¥, remains bounded in Wi;:(nm) for some q >% (when

m>2) as k+e. Ve conclude that y remains bounded in LT (R") as k=+=

loc
(in case m = 1, *x is bounded in L.(R) since it is bounded in Hl(lt)). Therefore
) vcnwk(q- - q;) +0 as k+ »

since || cnv(q- ~ gl , * O by the dominated convergence theorem (recall that
L

.




- 1 m
qve Lloc(R )). In both cases we find

¥n .

S0

[veg <5+
n
As n * *® we see that
[va<o vge D (&Y

and therefore v < 0 a.e. on R-.

Remark 2.2: The conclusion of Lemma 2.3 fails in 13 and in l‘ if we do not assume

(3). Ancona (personal communication) has constructea in ll3 and in I‘

e ™3 and uwe ™5™ n12(3®  euch that

-Au-q‘u+u-0 in D'

with ||q || m/2 23S Small as we please and u ¥ 0.
L

functions




3. Complex potentials

Let 2 be an (arbitrary) open subset of Rm. Assume qg(x) and q'(x) are real

valued functions such that q,q' € Lio‘:(ﬂ) and set

V(x) = gq(x) + iq'(x).

We assume

(m/2)+€
loc

l+e

(13) either q' € Ll:c(m or q €L (29) when m> 2,

for some arbitrarily small € > 0. Define
A= =5 + V(x)

with

1

2
10c(m and -Au + Vu e L°(Q)} .

D) = {ue H(l)(m; VuelL

The main results are the following
Theorem 3.1: Assume (1) and (13). Then A is closable in Lz(ﬂ) and A + xl is

m-accretive. In addition u e D(A) implies that u e H;(m, t:;]u[2 € Ll(ﬂ) and
(14) Re(Au,u) = [ |¢;z:adu|2 + [ q|u|2 >

Remark 3.1: In case we assume

(15) lq' (x)l f_Hq*(x) + h(x) for a.e. xe€ Q

2m/ (m+2)

loc
essentially with the assumption made in [5)). Indeed let u, € D(A) be such that

with he L () and m > 3 then A is closed in LZ(Q). (Note that (15) corresponds

u *u in L’(m and Aun + f in Lz(ﬂ). It follows from Lemma 2.1 and (14) that

u, *u in H;(ﬂ) and ‘é:“n > /q:u in 1%(2). From (15) we deduce easily that
1

Vu € Llo.c(ﬂ) and that =Au + Vu = f in D'(R). Therefore u € D(A) and Au = f.

When Q= R we consider also the operator A, defined in Lz(R‘) by

1

Al = -A + V(x)

with

1 m

D(A,) = {ue L2(®™; wue L] o (R) and -du +Vue L2(®™) .

Theorem 3.2: Assume (1), (3) and (13). Then A, is closable and i; =a.

In the proof of Theorem 3.1 we shall use the following

-12=




e

Lemma 3.1: Let v € Hé(Q) be a real valued function. Assume (1) and

-Av - q v + v <0 in D'(Q)

with A > Al. T™en v <0 a.e. on Q.

Proof of Lemma 3.1: We have, for every V¥ € D*(Q) i
fgtadvgradw-fq-w *Afw:o.
Now we use the fact (pointed out by G. Stampacchia) that D#(Q) is dense in
{ue H:')(Q); u>0 a.e. on Q} for the #' norm‘Y to derive that
f gradv grage - [ qw + ) [w <0 we Hé(Q). >0 .

Choosing v = v we obtain

[ loraav* |2 - [ IV 12+ [ V2 <o
and therefore v = 0.

The proof of Theorem 3.1 is divided into five steps.

step 1: R(A + 2 2 13(@ N L@ for X > 1.

Indeed let f € Lz(ﬂ) N L7(Q) and let u € H;(R) be the unique solution of

(16) “fu_ +Vu +)u =f !
= |
= - i ’
% where Vn 9. ~q 34 iq, and
n if q" >a |
!
L] = L] .
) ¢ it Jq'|<n
'E -n if q' <-n.
The existence of u follows from a theorem of Lax-Milgram. Multiplying (16) by ‘Tn

we find ’
un. - HmnllHl cc ‘

!
(18) falu)?<c. |

- Vindeed let ue H3(A) with w30 a.e.on @ let u € D@ be such that u +u

in H'(Q). We claim that la | + |ul =u in #'(Q) because Nla 11, = Nl and
n n "1 n Hl.

. |un| + |u| weakly in #'(2). On the other hand I“n' can be smoothed by convolution and for
fixed n, pctlun| + Iunl in #'(@) as €= o.

13-

-
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j |
!
On the other hand we have
alu | > Refdu sign g} in D'(®)
which leads to
= E i '
Alunl q lunl + llunl = lfl in D'(Q) .
Let ¢ € H;(Q) be the solution of
(19) Ay - q ¥+ Ay = |f| .
It follows from Lemma 3.1 that
E
(20) lunl <y a.e.on Q.
By Theorem 2.3 we know that Y € Lp(ﬂ) for every p € [2,0). We extract a subsequence,
denoted again by un such that u +u weakly in H;(Q). un*u a.e. on Q2. We see as in
the proof of Theorem 2.1 (Step 1) that (q; = q-)un + qu in Lioc(m . Therefore we have
only to verify that q"‘un + q'u in Lioc (). We distinguish two cases:
> 1+¢
a) q' e LlOC(Q) ’
- (m/2)+e
)
L I'loc: &
Case a) From (20) we deduce that un + u in every Lp space, 2 < p <« and so
1
. L] 3 -
qn“n + q'u in Lloc(m c .
¢ s - q m ®© '5
} Case b) Since q V € Lloc(n) for some q > 3 it follows from (19) that Y € Lloc(m. (
i !
E We deduce from the dominated convergence theorem that qr"un + q'u in Lioc(ﬂ) . |
{ {
{ \ Step 2: A + Xl is accretive. Let u € D(A) and set T = Vu. We have
; -1 1
: n
‘ T€ H () Lloc(ﬂ) and
i Re T - u -qlulzz—q-lulze o .
£
i - It follows from Lemma 2.2 that q|u|2 e @ and
3
/ alu]? = Re(T,u) = RefAu + Au,u) .
Therefore
2 2 <4
(21 Re(Au,u) = [ |graau|? + [ qlul® > -A, [ |u]® .

Step 3: D(A) is dense in Lz(ﬂ). Given f e L2(9) N L.(Q) we solve for large n

the equation

p !
(22) u_ + ~ Aun £.




e e —

We shall prove that u ~ f in Lz(m as n * ®*-——and as a consequence D(A) is dense

in. Lz(Q). By (21) we have
90 4 2 2
I |“n| + ;f lgraau |© + !l;f alu |° = Retf,u) .

In particular we deduce that

(23) 1ig sy ”unlle < llfHLz
(24) Lfd' P <c
(25) -lr;f lqradunlz < e
Next we have (as in the proof of Step 1)
bl ;,l— alu | ‘%q-lun, < |£] in D' .

On the other hand let Y € Hé(ﬂ) be the solution of

-0y - q ¥+ A = |f]

u
for some fixed A > A . Since Iunl > A —nﬂl for n > A, we deduce from Lemma 3.1 that

1
u
-nﬂ <y a.e. Choose a subsequence, denoted again by u such that u + u weakly in

L‘(Q), :‘—‘un + 0 a.e. (this is possible since %“n R Lz(m) . For every
v € D(Q) we have
- 1 - 1 - -
- = + = = "
(26) [u@g-2[use+-fvag=[g
We claim that I | Va# >0 as n+ . Indeed by (24) and (25) we have

- C i el e C
%”q+“n¢|:-ﬁ and -,-\-”qunw]:ﬁ.

Thus we have only to verify that %f q'unw + 0. We distinguish two cases:

(m/2)+e ®

& (2), we have ¥ € L. __(R) and we deduce from the dominated convergence

a) if q e L os

theorem that %] q'un\; > 0;

1+¢

loet:m we use the fact that
to deduce that ~—'+0 in 1°(2) and so

u
b) if q' €L A

<ye P (@) for every 2 <p < =

n
f q'un; 0

3=
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In all the cases, we derive from (26) that

Juw=[f wenD
and consequently u = f. We conclude using (23) that u + f in LZ(Q).
Step 4: A is closable and A+ Xl is m-accretive. This is a standard fact, see e.g.
Theoram 3.4 in [2].

Step 5: u € D(A) implies that u e Hé(ﬂ). alul? e LY@ ana (14).

We already know (Step 2) that v € D(A) implies q|v|2 L

(27) Re(av,v) = [ |graav|? + [ q|v|? .
Now let u € D(A) and let u € D(A) be such that u >u, Aun + Au. It follows from
. ; 1 & 2 g
(27) applied to v = o um that un *+u in HO(Q) and ] q |un = u| + 0 (since un
is a Cauchy sequence in Hg(n) and in LZ(Q) with weight q+). In particular

qlul? € L}(2) and (14) holds.

Proof of Theorem 3.2: Clearly A C Al. Now let u ¢ D(Al) and let 1 > Al. Set

*
f = Alu + Au, and let u Dbe the unique solution of

- *
Au + Au =f .

* * *
Thus, there exists a sequence u > u in L2(1§5 with u, € D(A) and
* *
Au. + M =f +f in L3(EY.
n n n
In particular we have

. At £
Al(un - u) + (un -u) = fn -

and therefore

. — ; m
-Alu, - u| - q |un - uf + )«|un -ul| < |fn - £| in D"(R) .

*
We deduce from Lemma 2.3 that |u - u|

A

wn a.e. on R" where wn € Hl(ny) is

the solution of

“bv, - TV

Mg T Ifn i

* *
Hence ||y || ; + O and in particular u -u=+0 in L2(®R™). It follows that u = u,
H :

that is A CA. Wehave ACA CA and therefore A is closable with A = A.

1 1 .
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